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Anomalous transport in turbulent plasmas and continuous time random walks
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The possibility of a model of anomalous transport problems in a turbulent plasma by a purely stochas-
tic process is investigated. The theory of continuous time random walks (CTRW’s) is briefly reviewed.
It is shown that a particular class, called the standard long tail CTRW’s is of special interest for the
description of subdiffusive transport. Its evolution is described by a non-Markovian diffusion equation
that is constructed in such a way as to yield exact values for all the moments of the density profile. The
concept of a CTRW model is compared to an exact solution of a simple test problem: transport of
charged particles in a fluctuating magnetic field in the limit of infinite perpendicular correlation length.
Although the well-known behavior of the mean square displacement proportional to t!/? is easily
recovered, the exact density profile cannot be modeled by a CTRW. However, the quasilinear approxi-
mation of the kinetic equation has the form of a non-Markovian diffusion equation and can thus be gen-
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erated by a CTRW.

PACS number(s): 52.25.Fi, 05.40.+j, 52.25.Gj, 52.35.Ra

I. INTRODUCTION

The problem of anomalous transport of particles and of
energy in a magnetized plasma is a standing open prob-
lem. In particular, in a magnetically confined plasma,
such as the one produced in a tokamak or a stellarator,
the problem is of outstanding practical importance; it is
also of an extraordinary complexity. The concept of
anomalous transport was very vague in the beginning (it
merely designated whatever mechanism that is different
from the classical or neoclassical one). It soon appeared
that these anomalous processes were related to unstable
fluctuations leading to a turbulent state of the plasma [1].
The most fundamental works in this field use as a starting
point a Kkinetic equation for the distribution function
f%x,v;t) (x is the position and v the velocity of a parti-
cle of species a) for particles submitted to the action of
an electric field E(x;t) and a magnetic field B(x;?) and
(possibly) to their mutual collisions. The electric and/or
the magnetic field are supposed to be fluctuating func-
tions: as a result, the distribution function f%(x,v;t) be-
comes a random function and the kinetic equation must
be treated as a stochastic equation. The determination of
the observable quantities then involves a double averag-
ing process: the phase-space average used in statistical
mechanics and in kinetic theory in a given realization of
the fields, followed by an ensemble average over the reali-
zations of the fluctuating fields.

In spite of (or because of) its attractive features, the
theoretical treatment of reasonably realistic kinetic equa-
tions derived from first principles is extremely difficult.
For this reason, various alternative approaches to trans-
port have been devised. All of these use techniques taken
from the mathematical theory of stochastic processes.

We first consider the approach based on the concept of
the Langevin equation [2—4]. In its simplest version, this
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is the equation of motion of a test particle moving under
the combined influence of the electromagnetic field and
the collisions with the other particles of the plasma. The
main simplification introduced in the Langevin equation
consists in replacing the exact mechanical description of
the Coulomb interparticle interactions (which would cou-
ple all the particles’ equations) by an effective force exert-
ed by the medium (as a whole) on the particle. This force
is considered a random quantity, defined by its statistical
properties. It is then shown that the solution of the
Langevin equation directly leads to a determination of
the diffusion coefficient. The Langevin equation can be
generalized by considering the electromagnetic field to be
also a stochastic quantity: this provides a basis for the
anomalous transport [5—9]. Most important, as will be
seen below, it opens the door to the treatment of a possi-
ble nondiffusive behavior: this will be one of the main
goals of the present work.

The Langevin equation approach cannot provide com-
plete information about the transport processes. In par-
ticular, it does not determine the shape of the density
profile n(x,¢) as a function of position and time, informa-
tion that is very important, especially in the case of
nondiffusive processes. The solution of this problem is
provided by the Fokker-Planck equation, which can be
associated with the Langevin equation (under certain
conditions) by a standard procedure [2-4,9-11]. A
different version that is even closer to the latter was in-
troduced in our recent work [9] under the name of Aybrid
kinetic equation. The Fokker-Planck or the hybrid kinet-
ic equations can be put to the same uses as a bona fide
kinetic equation: their less rigorous dynamical foundation
is compensated for by greater simplicity.

All the methods described above can be used whenever
the electric and/or the magnetic field are purely stochas-
tic quantities. In a tokamak there may indeed exist re-
gions where the regular toroidal magnetic surfaces are
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completely destroyed, e.g., as a result of tearing instabili-
ties. The previously described methods may be used for
the description of transport through such regions. The
real magnetic field configuration in a tokamak is, howev-
er, incredibly more complex (see, e.g., Ref. [12]): it con-
tains regions of regular tori, magnetic islands of various
orders, surrounded by cantori and imbedded in a stochas-
tic sea, in which one may find other structures, such as
vortices, holes, etc. An exact description of the transport
through such complex media is hopeless. One necessarily
has to give up a dynamical picture and appeal even more
to statistical concepts.

Although this type of theory is still in its childhood, a
class of methods appears to be quite promising. It is
based on the concept of random walk, in which one com-
pletely gives up the idea of a force driving the motion.
The latter is modeled by a succession of random jumps,
determined by a set of probabilistic rules. Although the
theory of random walks is a very old subject, it has been
recently enriched by a series of very important works
([13-17] and references therein), which may open the
door to the treatment of highly anomalous contributions
of the type described above. The attention of plasma
physicists has been directed to these methods by a recent
paper [18], which introduced the concept of strange
kinetics as a possible new paradigm in the theory of
anomalous transport in plasmas.

In the present work we intend to consider the applica-
bility of such methods by studying an academic test prob-
lem, which possesses none of the complexities mentioned
above, but has the great advantage of being exactly solu-
ble (up to a certain point) and of exhibiting nontrivial
anomalous, nondiffusive behavior. A study of this prob-
lem was done in Ref. [9] by using the Langevin equations,
the hybrid kinetic equation, and the Fokker-Planck equa-
tion. Our main purpose here will be to investigate the
connection of these ‘“semidynamical” results to a fully
stochastic treatment based on a continuous time random
walk (CTRW) (we use “semidynamical” to indicate that
the exact dynamics of the particle collisions is modeled
by a stochastic force).

The paper is organized as follows. The problem of
anomalous transport due to magnetic fluctuations is
defined in Sec. II and the results of Ref. [9] based on the
Langevin equations are summarized. The concept of
CTRW’s and the principal general results are briefly re-
viewed in Sec. III. In Sec. IV the specific class of
CTRW’s relevant to our problem are defined under the
name of “standard long tail CTRW” (SLT CTRW) and
its specific features are described. In particular, the mean
square displacement (MSD) and the density profile are
known, at least asymptotically, for arbitrary dimensional-
ity. In Sec. V an alternative form of the equation of evo-
lution is derived for the description of the SLT CTRW.
It has the very suggestive form of a non-Markovian
diffusion equation. Another interesting result derived
here is an exact asymptotic expression of all the moments
of a SLT CTRW, involving not only their scaling
(diffusion exponent), but also the complete numerical
coefficient, for arbitrary dimensionality. These general
results are then applied to the problem of magnetic tur-
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bulence in Sec. VI: it is very easy to construct a SLT
CTRW that yields the exact MSD derived from the
Langevin equation in Sec. II; it is much less trivial to
derive a correct density profile. Two known results of
Refs. [5] and [7] are discussed in connection with the SLT
CTRW concept. In Sec. VII an exact solution is obtained
for the density profile from the hybrid kinetic equation
attached to the Langevin equations of the magnetic tur-
bulence problem. This exact density profile, which is a
highly nonlinear function of the spectrum of magnetic
fluctuations, cannot be described by a CTRW. But the
so-called quasilinear approximation of its equation of
evolution is precisely equivalent to a SLT CTRW. In ad-
dition, some consequences are discussed in Sec. VII. Sec-
tion VIII presents the conclusions.

II. THE V-LANGEVIN EQUATIONS
FOR A PARTICLE IN A FLUCTUATING
MAGNETIC FIELD

The problem of anomalous transport due to magnetic
fluctuations will be the main theme of our present work.
It is modeled by considering a charged test particle mov-
ing in the presence of a strong magnetic field and under-
going collisions with the surrounding plasma. The latter
are modeled as a statistical noise. In the absence of col-
lisions, the motion of the particle is assimilated to the
motion of its guiding center, which, to dominant order,
follows the magnetic field lines. The description is thus
semidynamical in the sense that the exact Coulomb in-
teractions are replaced by a collisional noise.

The magnetic field itself is considered to be of the form

B(z)=B,[e,+b(z)e,] . (1

B, is the strength of the homogeneous reference field,
directed along the z axis. Byb(z) represents a small fluc-
tuating component perpendicular to the main field. Its
complete statistical definition is given below. For simpli-
city, it is supposed to be directed in the x direction (this is
an unessential assumption). More important are the as-
sumptions about the functional dependence: b(z) is as-
sumed to be independent of time (“‘quenched fluctua-
tions”) and also of x,y (the perpendicular correlation
length is infinite). As shown in Ref. [9], with these as-
sumptions the problem becomes, in a sense, linear and
thus integrable.

We now consider the particle motion. In the present
approximation it is tied to the magnetic field lines. In the
limit of a very strong field B, the perpendicular col-
lisional diffusion is extremely small and can be neglected
compared to the parallel collisional diffusion coefficient
X;- The particle moves in the x direction only in so far as
the field lines diffuse in the perpendicular direction. The
velocity of the test particle thus obeys the V-Langevin
(i.e., velocity-Langevin) equations [9]

%Zb[z(t)]v(t) , @)
dz(t) _

2t v(t) . (3)
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Here v(¢) is the parallel velocity (denoted by 7, in Ref.
[9]), which is defined statistically (collisional noise).
Equations (2) and (3) form a set of two doubly stochastic
equations: they involve the fluctuating magnetic field
b(z) and the fluctuating parallel velocity v(¢). The fluc-
tuating field b(z) is defined statistically as a spatially
homogeneous Gaussian process, whose first two moments
are

(b(2)),=0, (b(z)b(z+r)),=B(r). 4)

Whenever necessary for clarity, a subscript on an angular
bracket denotes the quantity that is averaged over. The
function B(r) is

r2

B(r)=p*exp _2—}»ﬁ

(5)

We also consider the Fourier representation of the fluc-
tuating field (the definition of the Fourier transformation
is different, though equivalent to the one used in Ref. [9],
for an easy comparison with the literature on CTRW)

:L —ikz
b(z)==— [dke ™b(k) . (6)

The correlation function of the Fourier components is
(b(k)b(Kk")),=B(k)S(k+k') . (7)

The function B(k) is called the spectral density of the
magnetic field fluctuations or, briefly, the spectrum:

Blk)=(2m)*"?A B exp(— LATk?) . (®)

In order to represent the effect of the collisions, the
fluctuating parallel velocity v(¢) is modeled as a Gaussian
process with

(v(2)),=0, (w(th(t+7)),=1VZexp(—v|7|), )

where V=V 2T /m is the thermal velocity and v is the
collision frequency [9] (T is the plasma temperature and
m the mass of the test particle). Finally, it is assumed
that the magnetic fluctuations and the velocity fluctua-
tions are statistically independent. This implies the fol-
lowing form for the Eulerian correlation of the field at a
fixed position z and the random velocity at an arbitrary
time:

«b(zw(2) N, ,=0, (10)

where the double angular brackets denote an average
over both b and v.

The stochastic equations (2) and (3), combined with the
statistical assumptions (4)—(10) were solved in Ref. [9]
with the initial condition (z(0))) =z, «(x(0))=x,,
and 8z(0)=38x(0)=0, where 8A4(¢)=A(¢)—{( A)).
In particular, the MSD (8x2%(¢)) in the x direction can
be calculated exactly. From this quantity, a running
diffusion coefficient D(¢) is derived by the classical for-
mula

D(1)=13,(8x%(t)) . (11)

The following expression was obtained in Ref. [9] for the
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running diffusion coefficient:
D(1)= ['dr(2m) " [ dk Bk)Z (k;7) (12)
0
with
Z(ksm)=(exp ik [ Ta0uo) [pie ) a3
t v

The function Z(k;7) was calculated exactly in Ref. [9],
as well as the integration over k in Eq. (12):

D(t)=2¢ [ 'drF(vr), (14)
0
with
1 _ X(x)
F - - x| Y @ \x) . 15
) w7 le 2 T+yy(x) 13

Here the following functions have been introduced:

pE)=1—e 8, PE)=E—p(&) . (16)

The running diffusion coefficient depends on two parame-
ters: € is a measure of the intensity of the magnetic fluc-
tuations

e=1B*v%, (17)

whereas ¥ is interpreted as the square of the ratio of the
mean free path A, to the parallel correlation length of
the magnetic field fluctuations A; it is therefore a mea-
sure of the collisionality of the plasma (a small ¥ corre-
sponds to a highly collisional plasma)
2 2
=T 19
VAL A

14

The running diffusion coefficient and the MSD were
calculated analytically in Ref. [9]:

(vt)
D(t)=y,f—L (19)
=B T w7

-and

(8x2(2)) =2A1B%y {[1+yo(ve)]'*—1} . (20)
Here y is the parallel collisional diffusion coefficient

Vi
an—z—; . (21)

It is important to study the behavior of these quantities
in two limiting situations. For short time, vt <<1,
@(x)=x+0(x?), and P(x)=x2/2+0(x?); hence

D(t)=et, (6x%t))=et?, vt<<1. 22)

This is a typically ballistic, nondiffusive behavior. In the
opposite limit of long time, ¢(x )~ 1 and ¥(x ) ~ x; thus

t172 . (23)

D(t)=x il t712 (8x1)) =4y B
Vo Vv

Thus the MSD does not tend asymptotically to a linear
function in time. Our model system exhibits strongly
anomalous behavior. We define this concept as follows.

Assume that for a given statistical system the MSD
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behaves asymptotically like a power law
(8x2(1))= Ar*. (24)

a is the diffusion exponent (note that there are various
definitions for this exponent in the literature). Whenever
a=1, the system exhibits (normal) diffusive behavior.
For every other value of a (or for a dependence different
from a power law, such as, e.g., Int) the system exhibits
strongly anomalous behavior.

More specifically, when 0 <a < 1, the behavior is called
subdiffusive. In this case, in the limit ¢ — oo, the running
diffusion coefficient tends to zero. When 1 <a < o, the
behavior is superdiffusive: the asymptotic diffusion
coefficient is infinite.

Our present problem provides us with a remarkably
simple example of a subdiffusive behavior, with a=1.
For this reason, it will be extensively studied in the fol-
lowing sections.

III. CONTINUOUS TIME RANDOM WALKS

We now go one step further in the modeling of trans-
port processes. In complex problems involving motion of
particles through a strongly inhomogeneous and partially
disordered medium as described in Sec. I, even the
Langevin equation (or the hybrid kinetic equation) be-
comes prohibitive. In such cases a more radical model
could be useful. One gives up the description of the
motion by “semideterministic” laws (i.e., a Newton equa-
tion with random forces); the evolution is described by a
succession of displacements ruled by purely probabilistic
prescriptions. This method has been applied to a large
variety of problems and has been revived in recent years
by important developments [13—-18], which are briefly re-
viewed below.

For full generality, we consider the motion of a test
particle in a space of d dimensions. In the CTRW model,
the particle performs an instantaneous jump r of arbi-
trary length and arbitrary direction at time ¢ and then
remains at its new position for a finite time 7, after which
it makes a new jump and so on. It is assumed that these
jumps are statistically independent. The probability den-
sity function (PDF) of a jump described by a vector r is
denoted by f(r). The Fourier transform of this function
(called the structure function) will be denoted by f(k).
The jumps are performed at random intervals, which
must be defined statistically. We thus introduce the wait-
ing time distribution ¥(¢), defined as the PDF of a pause
of duration ¢ between two successive steps. Alternatively,
() represents the PDF that a step is taken at a time in-
terval ¢ after the previous one. We also introduce the La-
place transform of this function as well as the corre-
sponding inversion formula

@(s)=fowdte_x’¢(t) ,
(25)

=_1_ stp
we)=5— [ dseils)

where I’ is the usual Bromwich contour in the complex s
plane for the inversion of the Laplace transformation,
i.e., a parallel to the imaginary axis lying to the right of
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all singularities of the integrand.

Our main goal will be the calculation of n(x,z): the
PDF that a particle starting in x=0 at time =0 will be
in x at time ¢. This quantity will be called the density
profile. In a classical work, Montroll and Weiss [19] de-
rived the following equation for this quantity:

n(x,1)=(2mi)"" [ dse*(2m)

dedke_“""l_s(s)

X —‘,\1—~ .
1—4(s)f (k)
The Montroll-Weiss equation (26) yields the complete
solution of the continuous time random walk problem.
When the structure function F(k) and the waiting time
distribution 1(s) are given, the density profile is deter-
mined by a quadrature.
Montroll and Shlesinger [13] showed that the density
profile n(x,t) obeys an interesting integro-differential
equation

o,n(x,t)= fotdﬂﬁ(t—‘r)

(26)

X | —n(x,7)

+ [d%' f(x—x)n(x,7) @7
or, in a Fourier-Laplace representation,

sA(k,s)—1=—4¢(s)[1—F(k) A (k,s) , (28)

where the kernel ¢(s) (in the Laplace representation) is
defined as

O 29)
1—1(s) :
The generalized master equation (27) or (28) governs the
evolution of the density profile in a CTRW. Its most
characteristic feature is its non-Markovian character,
both in time and in space: the rate of change of n(x,?) is
determined by the past history and by the spatial envi-
ronment. The effective importance of these features is
determined by the range of the functions ¢(z) and f(x).
The following generalization of the central limit
theorem for continuous time random walks is rather easi-
ly derived [13]: For any CTRW characterized by a transi-
tion probability f(x) having at least finite first and
second moments {x) and (r2), respectively [where
r=(x-x)1/2] and a waiting time distribution (z) having
at least a finite first moment (¢), the density profile
n(x,t) tends to a Gaussian packet for long times and
large distances

_ 1 | x=wt]?
ng(x,t) —-——(21TDt a7z exp | =~ | (30)
wherc
(x) 1 {r?)
= %X p=— 31
=1y PTa Gy
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The most interesting CTRW’s are those corresponding
to a definitely non-Gaussian process. In these cases the
conditions of the central limit theorem are not satisfied,
i.e., either f(x) or ¥(t) or both have a long tail, implying
that their first and/or second moments diverge. An im-
portant problem of this kind is introduced in the next
section.

IV. THE STANDARD LONG-TAIL
CONTINUOUS TIME RANDOM WALK

A CTRW is determined by two functions: the transi-
tion probability f(x) and the waiting time distribution
Y(z), or equivalently by their Fourier and Laplace trans-
forms f(k) and ¢(s) respectively. We now consider a
special case of CTRW defined as follows. We take the
structure function f(k) to be a symmetrical function, de-
pending only on the absolute value of the wave vector.
We assume it to be analytic near kK =0: this implies the

existence of at least the second moment o2 of f(x). The
form of f(k) near k =0 is thus
f(k)——l———azk + - k—o0. (32)

2d

As for the Laplace transform of the waiting time distribu-

tion, it is assumed to have the following nonanalytic form

near s =0:
Ps)=1—71%s%+ -+ -,

O0<a<l, s—0. (33)

We introduced here a characteristic time 75, thus (7ps)
is a dimensionless quantity. Note that 7, is not to be
confused with the average duration of the pauses (1),

because here (1) ~(di(s)/ds)|,—g~s*",—o= .
Such random processes with an infinite average duration
between jumps can be imagined [13] as a succession of
long pauses followed by bursts of events; very long pauses
can occur, but there always is a small but finite probabili-
ty of an even longer pause. As a result, the average dura-
tion between jumps is infinite.

We also consider the inverse Laplace transform of the
function tlf(s , i.e., the waltlng time distribution. The
transformation of s requires the application of Abelian
and Tauberian theorems (see, e.g., [20])

—1—a

——F(Ia—a) - e G4
D

W)= +o,

In view of its importance for our purpose, we call the
CTRW defined by Egs. (32)-(34) the standard long-tail
CTRW.

The Montroll-Weiss equation (26) yields the following
form of the Fourier-Laplace transform of the density
profile in the asymptotic limit s —0, k —0:

1 1

ay 1 '
(1ps) +—2—d—(ak)2

From here, the MSD is easily obtained by using a well-
known formula

A(k,s)=15s%" (35)

<r2<t)>~—% s Olr=o -
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Performing the appropriate inverse Laplace transforma-
tion by using a Tauberian theorem, we obtain

1 2
r(1+a)?

a

L1 o<a<1. (36)

(r¥t))=

Tp

Thus the behavior of the SLT CTRW is always
subdiffusive. The MSD is determined by the second mo-
ment of the structure function o2. We note the impor-
tant point that the exponent a defining the waiting time
distribution (33) turns out to be precisely the diffusion ex-
ponent. It is also important to note that neither the
diffusion exponent a nor the coefficient of ¢* depends on
the dimensionality d of the space.

A CTRW similar to the SLT CTRW was introduced
by Montroll and Shlesinger [13]: they considered, howev-
er, the case in which the transition probability f(x)
possesses a nonvanishing first moment {x). The result is,
in this case, quite different from the previous one: the
MSD is determined asymptotically by the first, rather
than the second, moment of f(x) and the diffusion ex-
ponent is 2a.

The SLT CTRW was studied explicitly by Ball, Havlin,
and Weiss [21] and reviewed by Bouchaud and Georges
[14]. An important result obtained by Ball, Havlin, and
Weiss is an asymptotic analytical expression for the den-
sity profile n(x,¢) of a SLT CTRW. [Unfortunately some
(unimportant) misprints appear in both Refs. [21] and
[14]: they are corrected here.] [Note that the density
profile depends only on the absolute value of the distance
to the origin r=(x-x)"% n(x,t)=n(r,t) (as it should,
for an isotropic system).] Starting from the Montroll-
Weiss equation (26), they performed the inverse Fourier-
Laplace transformation, with the result

ad/2
n(r,t)=c~ ¢ |— F(q), (37)
where
a/2
D r
= |2 LA 38
q p p (38)

This is a typical scaling relation. It tells us, in particular,
that the density profile depends on 7 only through the
similarity variable g defined in Eq. (38). The function
F(q) is defined in terms of a complicated integral, which
is not rewritten here. An important consequence of Eq.
(37) is the scaling relation for the moments of the density
profile. Multiplying Eq. (37) by 7%, integrating over
x, and changing the integration variable to x—o(t/
7p)%/%€, we easily obtain

pa

(r¥(1))=0*M, 39)

_t
D

A quite important feature is the fact that the scaling ex-
ponent pa is independent of the dimensionality d of the
space. Moreover, the form of the function F(q) does not
influence the value of the diffusion exponent a: it only
determines the value of the constant M,. The value of
the latter depends on the order p, on the exponent «a, and
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on the dimensionality d. For p=1, Eq. (39) reduces, of
course, to Eq. (36). In this particular case the constant
M, is independent of d. The present calculation cannot
yield the value of the coefficient M, for arbitrary p: the
latter will be obtained in Sec. V.

Although the function F(q) cannot be calculated ex-
plicitly in general, its asymptotic behavior has been es-
timated in Ref. [21] as

F(g)~exp(—1ig®), =%a, g—o . (40)

2
This characteristic ‘“‘stretched exponential” behavior
reduces, as it should, to the Gaussian profile when a=1
(i.e., in the diffusive case).

We now consider the one-dimensional SLT CTRW,
i.e., the case d =1. It turns out that this case is particu-
larly interesting for our applications; on the other hand,
it is possible to derive completely explicit formulas for
this case. Ball, Havlin, and Weiss [21] obtained the ex-
pression

—a/2
n(x,t)zi 1 —_
g 23—ap 4—a ™D
2
2/(2—a)
X exp —ﬂ4— , g>1,d=1. (41)

This form of the one-dimensional density profile of the
SLT CTRW will be used in forthcoming sections.

V. THE NON-MARKOVIAN DIFFUSION EQUATION

We now consider the problem of the equation of evolu-
tion satisfied by the SLT CTRW. In Sec. III the
Montroll-Shlesinger master equation (27) and (28) for a
general CTRW [13] was recalled. It appeared as a linear,
non-Markovian equation for the density profile n(x,?).
Our purpose here is to derive its specific form for the
standard long-tail CTRW and study its relation to the or-
dinary diffusion equation.

We consider thus again the SLT CTRW defined by
Egs. (32) and (33). Its asymptotic Fourier-Laplace densi-
ty profile was obtained, in the limit s —0, kK —0, in Eq.
(35). It is easily checked that this function satisfies the
master equation (28) with the kernel ¢(s) defined by Eq.
(29):

~ 1—(7ps)®
oy L 1m0

T (1ps)*7!

which is simplified by retaining only the leading term as
s —0:

Bls)=—(rps)e. “2)
Tp
The Fourier-Laplace master equation (28) reduces to
sﬁ<k,s)~1=—$<s)i<ak)2ﬁ(k,s). 43)

The inverse Fourier transform of this equation is
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2
sA(x,s)—8(x)= g—d$(s)V2ﬁ(x,s) . (44)

This looks very much like a Laplace-transformed
diffusion equation [we recall that the initial value of the
density profile is n(x,z=0)=8(x)]. However, the
diffusion coefficient in Laplace space is not a constant but
a function of s. As a result, the inverse Laplace trans-
form of Eq. (44) is an integral equation in time

_o* pt
a,n(x,t)—ﬁfodrqb(’r)vzn(x,t—r) . 45)

Our main conclusion at this point is that the density
profile of a standard long-tail CTRW obeys a linear,
non-Markovian integro-differential equation. Given the
obvious resemblance of this equation to the diffusion
equation, we call it the non-Markovian diffusion equation.
Thus the rate of change of the density profile at time ¢ is
influenced by its past history. Moreover, given the long
tail of the kernel ¢(¢), the domain of effective influence
extends far into the past. It is this feature that is respon-
sible of the non-Gaussian character of the density profile
and of the anomalous transport law.

In order to calculate the kernel ¢(z) we must proceed
with some care in order to avoid typical difficulties relat-
ed to the long tail. We note that ¢(s) can be simply relat-
ed to the Laplace transform of the waiting time distribu-
tion §i(s), defined in Eq. (33):

Pls)=—(rps)—e=L11-3,_()], (46)

Tp 7D

where 121\1_a(s) denotes the function #(s) in which the in-
dex a is changed to 1—a. We now evaluate the inverse
Laplace transform as explained in Sec. IV. The trans-
form of 1 is 8(¢), which can also be written, for conveni-
ence, as 7p8(¢ /7p). The transform of the second term is
provided by Eq. (34):

2—a

t

Tp

D

t

n)=— 8| |- @7)

1
7>

The & function is zero for ¢ > 0; we shall, however, keep
it here because it will help us in the forthcoming deriva-
tion. Substituting Eq. (47) into (45) we obtain the follow-
ing form for the equation of evolution:

9,n(x,t)=D,V?n(x,t)
2—a

.
21 Vaxit—7), 48)

—H, fotdr

where

o? _1l—a 1

Dy=——, =—% " p,.
° 2drp ° Ta) rp °

(49)

Equation (48) describes the evolution as a superposi-
tion of an ‘“‘ordinary” diffusion term, with a diffusion
coefficient D, and a non-Markovian process represented
by the second term. The characteristic feature of the ker-
nel in the latter is its Jong tail: it decreases very slowly, as
an inverse power law (note that 2—a>0). A very in-
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teresting feature appears in the definition of the
coefficient H,: being proportional to (l1—a), this
coefficient vanishes when a=1. Thus, in the diffusive
case a=1, the non-Markovian term in Eq. (48) disap-
pears and we are left with a pure diffusion equation.

As it stands, however, Eq. (48) does not really make
sense; indeed, the kernel 7~ 271¢ diverges at the lower lim-
it 7=0. This is not surprising because the expression of
¥(t) [Eq. (34)] and hence the second term of ¢(¢) [Eq.
(47)], are asymptotic expressions, valid for long times:
they are certainly inapplicable for 7—0. In order to cure
this difficulty, we introduce a lower cutoff 7, in the in-
tegral of Eq. (48). This parameter should be determined
in such a way as to satisfy a well-defined criterion: its
choice will be the object of the forthcoming discussion.
The equation will thus be written in the final form

9,n(x,t)=DyV?n(x,t)
2—a

o Vin(x,t—7) . (50)

—H, fT;de

In order to define the criterion mentioned above, we
consider the moments of this equation, beginning with
the second moment, i.e., the MSD. This moment was
determined independently in Eq. (36) and was shown to
scale asymptotically as (r%(¢t))~t% thus 9,{r%(t))
~t%"!, We now calculate the rate of change of the MSD
by using Eq. (50). Multiplying both sides by %, integrat-
ing by parts over x, and using Eq. (49), we obtain

(r1))=2dD, |1+ —1 " S (51)
8, re(t))= 0 T(a) 7'%—1
|
3,{r*(t)y=2p(2p+d—2)D <r21’—2(t)>~1_—0‘L
! 0 Na) 7p

T
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This expression contains a term that has the correct scal-
ing ~t®"! and a term that is constant, which would
dominate for a < 1: the latter term is thus spurious. But,
we can use our freedom for defining the cutoff 7, in
such a way as to annul this term: this leads to the value

Tin=[T(@)] V"7 (52)

With this choice of the cutoff, we obtain from Egs. (51)
and (49)

2 a

-
INl+a)

_t
Tp

t

1
200\ — L
(r¥(t))=2dDy7p 2@ p

This result is precisely identical to Eq. (36) obtained by
an independent method.

This result shows that the diffusion term in Eq. (50) is,
in a sense, “spurious” it compensates for the effect origi-
nating from the inaccurate short-time domain: the really
physical mechanism of evolution is in the long-tail non-
Markovian operator. However, in the diffusive case
a=1, the non-Markovian term vanishes and we are left
with a pure diffusion equation, as expected.

The validity of Eq. (50) is, however, not yet satisfacto-
rily settled. Indeed, although it yields the correct second
moment of the density profile, we should also wonder
about the higher-order moments.

In order to determine the higher-order moments, we
first note the identity (valid for arbitrary dimensionality)

Va®=2p02p+d—2)r%¥ "2, (53)

We then derive from Eq. (50) [by the same procedure as
used for Eq. (51)] the following recursion relation for the
moments:

2—a
t Tp

min

(r?P 2t —1)) ] . (54)

The scaling of the moments was derived in Eq. (39): {r?(z)) =C,t"*. Substituting this form into Eq. (54), we find

— l—a
Pa=l=2p(2p+d —2)D
paCyt p(2p )D, e

C, P Ve———=rsieC,_, fT;mdn“—z(t —r)p e ] : (55)

The value of the integral can be obtained, e.g., by the MATHEMATICA computer program; the result involves a hyper-
geometric function whose value, for (7,;,/t) <<1, is 1. Equation (56) then reduces to

paC,t?* '=2p(2p+d —2)D,C,_, {t?"*—(1—a)r}

We see again on the right-hand side two terms propor-
tional to ¢'» 71 that do not have the same scaling as the
left-hand side. Their coefficient must therefore be set
equal to zero; thus

1 Da=DI[1+alp=D] pa-1_

Tmin

a—1 1
- sp—Na
t .
) ]

(o) (pa) TD Na

(56)

This yields the same value for r;, as Eq. (52). This is a
very important result: it guarantees that the non-
Markovian diffusion equation (50), combined with the
definition (52) for the cutoff, yields the correct values for
all the moments of the density profile and hence for the
profile itself.

It is now easily seen that, using some identities for the
I" function as well as the definition (49), Eq. (56) reduces
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to

2
o Tlap—D] __,
=—((p-—1)2p+d—1 C,_,. 57

Cp d (p X 74 d ) I"(ap) Tp p—1 (57)

This recurrence relation is easily solved. One can check

by direct substitution that the moment of order 2p has

the form (39), with the following form for the coefficient:

y = dd+2) - (d+2p—2) (p—1)!
? dr al(pa) ~

This coefficient gives the final solution for all the mo-
ments of the SLT CTRW, for arbitrary diffusion ex-
ponent a (0<a=1), arbitrary order p, and arbitrary
dimensionality d. It is hardly necessary to emphasize the
fact that all the moments are independent of the cutoff

(58)

Tmin-

It is interesting to derive some special cases. Consider
first the case of the MSD, i.e., the case p =1, in arbitrary
dimensionality. Recalling that al'(a)=I(14+a), we see
that Eq. (58) then reduces to

F+a) 27

This result agrees with Eq. (36). Thus the MSD is the
only moment whose value is independent of the dimen-
sionality d.

Next, we consider the diffusive case a=1 for arbitrary
dimensionality. In this case we have al(pa)=T(p)
=(p—1) ! and Eq. (58) reduces to

M, (59)

Mp=d(d+2) (d+2p 2)’ -1 (60)
dr

This is a quite interesting case. In order to derive the
moments in the diffusive case, one may start from Eq.
(50) in which the non-Markovian term is deleted because
Hy,~(1—a) [Eq. (49)]. We are then left with an ordinary
diffusion equation, from which we derive a recursion
equation, which is simply Eq. (54) without the non-
Markovian term:

3,{r®(t))=2p(2p+d —2)Do{r* ~X(t)) . (61)

For p=1, this equation reduces to 3,{r%(t))=2dD,,
with the well-known diffusive solution for the MSD:
(r%(t))=2dD,t. From this starting point, the recursion
relation (61) is solved by successive iteration, yielding a
solution identical to Eq. (58), with a=1. The surprising
feature is that in the derivation of Eq. (58), at the step
(56), the contribution of the diffusive term, i.e., the first
term on the right-hand side of Eq. (56), is exactly can-
celed by the third term. Hence the expression (58), valid
for arbitrary a <1, results entirely from the non-
Markovian term in the equation of evolution. Neverthe-
less, when extrapolated to a=1, the result connects
smoothly to the result obtained from the “pure” diffusion
equation.

Another special case that will be of special interest for
us in the next section is the one-dimensional case (d =1)
for arbitrary a. In this case we note that
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dd+2)---(d+2p—2)(p—1)
d’
=1X3X5+" X(2p—1)X1X2X3 -+ (p—1)
” 2X4X -+ X(2p—2)

=1X3-+- X(2p—1)

201
_(p—1
»-t
thus
_@p—1n_ 1 _
M, = R 4= (62)

VI. MAGNETIC SUBDIFFUSION AND CTRW

We now return to the problem of magnetic turbulence
treated in Sec. II. This problem was treated semidynami-
cally by starting from the V-Langevin equations describ-
ing the motion of guiding centers in the presence of a
fluctuating magnetic field and of collisional diffusion in a
parallel direction. In the limit of an infinite perpendicu-
lar correlation length of the stochastic field, it was shown
that the motion of the particles is subdiffusive and the
MSD could be calculated exactly. Quite naturally, we
may ask ourselves whether this subdiffusive behavior
could be described by a continuous time random walk.
Given that many features of the present problem can be
calculated analytically, it appears as a remarkable “labo-
ratory” for testing the CTRW model.

The starting point of the analysis is Eq. (22) for the
MSD: it shows that this quantity is asymptotically pro-
portional to V'¢. In view of our study of CTRW’s, it ap-
pears natural to try to interpret this process in terms of a
standard long-tail CTRW, which always describes a
subdiffusive process. In order to define a SLT CTRW we
need to specify four parameters [see Egs. (32) and (33)]:
a,d,Tp, and o. These must be related to the parameters
at our disposal in our problem, i.e., the collisional parallel
diffusion coefficient x|, and the magnetic fluctuation
characteristics, i.e., the parallel correlation length A, and
the intensity of the fluctuations f.

(i) The value of the diffusion exponent is obvious:
a=1.

(ii) The value of the dimensionality requires a short dis-
cussion. From the point of view of fusion plasma phys-
ics, the main interest in transport theory lies in the study
of the transport across the toroidal magnetic surfaces of a
confined plasma, i.e., in the radial direction p of a
toroidal coordinate system. In our shearless slab
geometry, which is a local approximation to this situa-
tion, the radial coordinate is simulated by the x direction,
perpendicular to the main field. Thus our interest will be
in the one-dimensional transport processes in the x direc-
tion. Nevertheless, the two-dimensional process will also
be briefly considered below.

(iii) In order to define a characteristic time we could
first think of the inverse collision frequency v~ !. This,
however, does not properly describe the behavior of the
particles that remain tied to the magnetic field (because
the perpendicular collisional diffusion is neglected), the
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latter being coherent over a distance of order A;. The
natural definition of a typical time scale is the time it
takes for a localized bunch of particles to diffuse col-
lisionally over a distance A in the z direction:

=l =21 (63)
R Z R

The second form is obtained by using Eq. (23) and the
third form by Eq. (18). Thus the characteristic time 7,
differs from v~! by the factor y !, which is large when
the plasma is highly collisional.

(iv) Having defined the characteristic time 7, the
remaining parameter o is obtained by comparing the ex-
pression (23) of the MSD obtained from the V-Langevin
equation with the expression (36) obtained from the
CTRW (note that for a=1, [1/al(a)]=2/V'7):

172

2
(8x%(1)) =4y, B~ 2 o

(,V,V)I/Z 1/77.

(64)

Using Eq. (11) we obtain the corresponding running
diffusion coefficient
-1/2

(65)

Using, on the one hand, Egs. (18) and (21) and, on the
other hand, Eq. (63), we find

o=V B2 . (66)

Thus the characteristic perpendicular jump length o of
the CTRW is determined by the characteristics of the
magnetic fluctuations, in particular by their intensity 3
and their correlation length A [Eq. (5)]. This is clear be-
cause the only mechanism producing a radial displace-
ment of the particles (tied to the magnetic lines) is the ra-
dial diffusion of these lines themselves.

We collect these results in the following list defining
the SLT CTRW modeling the magnetic subdiffusive
motion of the plasma:

A2 —

It is thus very easy to adapt a SLT CTRW to our test
problem and to note that its characteristic parameters
have a reasonable physical meaning. The MSD is, how-
ever, a rather weak criterion, as many different models
may lead to the same MSD. A much more sensitive test
is the density profile, which will presently be considered.
The SLT CTRW model yields a density profile that
was derived under very general conditions by Ball, Hav-
lin, and Weiss [21] [Eq. (41)]. For a=1 and d =1, this
quantity is
1 1

,t s ——
nsLT(x ) o 25/21‘(%)

7D
t
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The similarity variable g, defined by Eq. (38), reduces
here to

D
t

L. (69)

q=
o

Alternatively, the SLT profile may be characterized as
a solution of the non-Markovian diffusion equation,
which reduces in the present case to

a,nSLT(x,t)—_-DOV,Z,nSLT(x,t)

3/2
T
—Hoft_ldf 21 Vngrlx,t—1),
m

(70)

with
p,=2" g-——L _p (71)

0 27p ’ 0 2\/17'7'D 0

These results will now be compared with the semi-
dynamical model. The latter can be treated in several
“levels of sophistication,” which will be successively con-
sidered below.

A first result is obtained by translating into an equation
of evolution the argument described qualitatively by Re-
chester and Rosenbluth [5]. The magnetic fluctuations
produce a spatial diffusion of the magnetic lines [5,22,23]
that can be described by a diffusion equation in which the
role of the time is played by the coordinate z:

%ﬁ(x,z)=dm Vri(x,z) . (72)
This is a purely geometrical problem. 7(x,z) is the PDF
for a point starting at “time” z=0 on a certain magnetic
line, to be found at a perpendicular deviation x at “time”
z. The magnetic diffusion coefficient d,, can be calculated
exactly in the limit A, — o by solving the corresponding
Langevin equation: it yields a well-known result [5,22,23]

d,=

172
> l BA, . (73)

Next, we consider the particles which diffuse collision-
ally in the parallel direction, but remain tied to the (per-
turbed) field lines. The particles will thus be dispersed in
the x direction because the field lines do so. The parti-
cles’ MSD (as a function of time) is estimated by replac-
ing z by the parallel collisional MSD

z—2(1)=(82%(1))'?=(2x)"/* . (74)

One thus obtains the following result for the MSD, which
can be expressed in terms of the SLT CTRW parameters:
172 172

(8x21))=V2g2 |-

Tp

(8x4t))gr= (75)

_71
2

This result differs by a numerical factor V'7/2 from the
result (22) obtained from the V-Langevin equation. The
reason of this (slight) discrepancy is the following. The
Rechester-Rosenbluth (RR) result is obtained by substi-
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tuting an asymptotic result [2(z)] into an asymptotic re-
sult [(8x%(z))]. Instead, the derivation of Eq. (22) in-
volves a single asymptotic limit of the exact expression of
{86x%(t)). We now introduce the change of variables (74)
in Eq. (72), which is thus transformed into an equation of
evolution in time:

a,nRR(x,t)=DRR(t)V,2‘nRR(x,t) 5 (76)
where ngp(x,t)=7[x,z(t)] and Dgg(t) is given by
1 o | ¢t -2 2
=—=— | =1Z| D).
Dggr(2) 23 1 | > (). (7N

Thus the Rechester-Rosenbluth argument leads to a
diffusion equation with a time-dependent diffusion
coefficient Dgg(2).

In conclusion, the Rechester-Rosenbluth argument
yields (up to the factor V'7/2) the same MSD and the
same running diffusion coefficient as the exact solution of
the Langevin equation and as the SLT CTRW model.
Nevertheless, the equation of evolution (76) is completely
different from the equation (70) resulting from the SLT
CTRW description. Equation (76) is a true Markovian
diffusion equation with a time-dependent diffusion
coefficient. By contrast, Eq. (70) is a non-Markovian
diffusion equation. It may therefore be expected that the
density profile predicted by Eq. (76) would be quite
different from Eq. (70).

Equation (76) is indeed very easily solved (the change
of variable ¢ to T2 transforms it into a diffusion equation
with a constant coefficient). The solution, expressed in
terms of the similarity variable g [Eq. (69)], is

1/4

exp

qZ

2V2

1 1
”RR(x,t)—-;‘W

Tp
t

(78)

Thus the profile obtained by the Rechester-Rosenbluth
argument is quite different from the one predicted by the
SLT CTRW Eq. (68). The former is simply a Gaussian
packet whose width increases more slowly in time than
the “usual” diffusive Gaussian (30) (~V'¢ instead of ~t).
Nevertheless, Eqgs. (68) and (78) have an important
feature in common: they both are of the general scaling
form (37) for d =1 and a=1; they differ only by the form
of the function F(q). Thus, as stated before, the density
profile is a much more sensitive description of the model
than the MSD.

It is not difficult to exhibit the precise relationship be-
tween the SLT and the RR profiles or, equivalently be-
tween Egs. (70) and (76) of which they are the fundamen-
tal solutions. Starting from the former, we may perform
a very well-known Markovianization procedure, which
amounts to neglecting the effect of the past history. For
full generality, we start from Eq. (50) and approximate
n(x,t—7) by n(x,t) in the integral on the right-hand
side. Using also Eq. (49), the non-Markovian equation is
transformed into a true diffusion equation

3,n(x,t)=Dy[1— A(t)]V?n(x,t) , (79)

where
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2—a
1—a t Tp
—A)=1———— [ dr|—
1— A1) TDF(a)mein T‘ -
— 1—a
—q__1 |2 1 |"p
INa) | Ty T(a) | ¢t

The two first terms on the right-hand side cancel each
other exactly for the value (52) of the cutoff 7 ;, and we
are left with

l1—a

D
0 V2ny,(x,1) . (80)

I'a)

Tp
t

atnM(X,t)=

We thus find in this Markovian approximation a diffusion
equation with a time-dependent diffusion coefficient. It is
easily checked that in the case d =1 and a=%, this equa-
tion reduces exactly to (76) and (77). We also write down
the fundamental solution of Eq. (80), which is obtained
by the same procedure as Eq. (78):

a/2
_ 1 | T'l+a) Tp
ny(x,t)=— | —— —
o 21 t
Xexp ———F-(lzil—)—q2 (81)

This function has again the correct scaling form (37) and
reduces to Eq. (78) for d =1, a=1. It is, however, quite
different from the density profile (41) obtained from the
SLT CTRW model.

We have thus identified precisely the nature of the ap-
proximation corresponding to the Rechester-Rosenbluth
argument. It should now be noted that the Markovian
approximation is usually performed as an asymptotic ap-
proximation for integral equations in which the kernel is
a rapidly decaying function, typically of exponential type.
The latter defines a characteristic memory time 7,
whereas the characteristic time of the variation of the
density profile is, say 7,. Whenever 7,, <<7,, the Marko-
vian approximation is fully justified. But in the present
case, the decay of the memory Kkernel is very slow; it is
characterized by the power-law long tail ~¢2~% There
exists actually no definite characteristic time 7,,, hence
the Markovianization can hardly be justified. It may
indeed also be noted that the ‘“Markovianized” profile
(81) cannot be obtained from the exact profile (41) by a
limiting process.

The density profiles (68) [produced by Eq. (70)] and (78)
[produced by Eq. (76)] are compared in Fig. 1. They are
drawn as functions of x at various times. We see that the
SLT profiles are much lower in the bulk, but extend
much farther along x (long tail). The width of both
curves grows in time, proportionally to ¢!/# in both cases.
The shapes of the profiles are clearly quite different, even
though the MSD has the same scaling.

We now briefly discuss a density profile that, at first
sight, appears to be quite different from both previous
ones. Rax and White [7] considered the V-Langevin
equations (2) and (3) for the problem of magnetic tur-
bulence and gave a solution not only for the MSD but
also for the density profile. The latter was obtained by
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FIG. 1. Density profiles at various times in reduced units of
t/7p and x/o. Full line, SLT CTRW, Eq. (68); dashed line:
Markovian approximation, Eq. (78).

assigning a Gaussian probability distribution to the vari-
ous paths and using a functional integration technique to-
gether with an asymptotic saddle point approximation.
It must be stressed that they solved the two-dimensional
problem d =2 and calculated the profile as a function of ¢
and r, =(x2+y?)!”2. Omitting all constant factors, we
write their result as

r1/3

t1/3

1/3 /

nrw(r,t)~t =323 exp (82)

This is a quite different profile from both previous ones.
It has a peculiar singularity in #, =0. It should, however,
be noted that the domain of small r, is not relevant be-
cause (82) is an asymptotic formula. The authors did not
notice that Eq. (82) is just a particular case of the general
scaling relation (40). Indeed, when we change the vari-
able r, into the scaling variable g, defined by Eq. (38)
1

with a= 3, we find

nrw(g,t)~t 12 2 exp(—q*?), d=2. (83)

This is precisely of the form of (37), i.e., t~%/2F(q).
Thus the Rax-White result shows that the V-Langevin
equations (in two dimensions), combined with their pro-
babilistic assignment, lead to the same density profile as
the SLT random walk. This important result will be dis-
cussed further in Sec. VII.

It is easily checked that the solution of the Markovian-
ized equation (80) in two dimensions is very similar to Eq.
(78), except for the explicit time dependence, which is
~t 12 instead of t ~1/4. More precisely, this is the solu-
tion depending on r =(x2+y?)!/? in radial coordinates:

"an(’»t)zz;lﬁ exp(—1g?), d=2. (84)
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VII. KINETIC EQUATION vs SLT CTRW

In the preceding section we investigated the possibility
of adapting a SLT CTRW model to the magnetic tur-
bulent diffusion problem, by choosing appropriate param-
eters a (=%), o, and 7 in order to match the MSD cal-
culated from the V-Langevin equations. We saw that this
choice does not uniquely determine the density profile.
Only in the two-dimensional Rax-White case is there an
attempt to relate the profile to the V-Langevin equations;
but the methods used by these authors introduces addi-
tional assumptions, which have to be evaluated.

In order to treat this problem in full generality we
solve a kinetic equation for the one-particle distribution
function. Though being equivalent to the F-Langevin
equations, its solution yields directly the complete density
profile rather than its individual moments. In Ref. [9] we
introduced the concept of a hybrid kinetic equation
(HKE) constructed in such a way as to contain the same
physics as the Langevin equations. This is a first-order
partial differential equation for the distribution function
f(x,z;t), whose characteristics are the V-Langevin equa-
tions (2) and (3) for a given realization of both the mag-
netic field b(z) and the velocity v(¢):

d 0 o ,_
atf—{—v(t)azf—i-u(t)b(z)axf—O. (85)

This is a simpler version of the HKE than the one studied
in Ref. [9], which was adapted to the Langevin equations
for the acceleration. It was shown there that the latter
equations (as well as the HKE) yield the same MSD as
the V-Langevin equations.

The HKE looks rather different from the usual kinetic
equations of statistical physics, which describe the distri-
bution function in the complete phase space (x,v). The
function f appearing here depends only on two spatial
coordinates and not on the velocity. The parallel velocity
v(t) is considered a given function of time. The HKE is
declared to be a doubly stochastic equation: both the ve-
locity v(¢) and the magnetic field b(z) are considered
Gaussian random variables defined statistically by Egs.
(4)-(10). The strategy of solution is straightforward.
The HKE is integrated exactly for a given realization.
This solution is used for the calculation of the relevant
quantities (such as the particle flux, the density profile,
etc.). The final result is then averaged over v and b. This
operation does not require any additional probabilistic as-
sumptions beyond those underlying the V-Langevin equa-
tions.

We note that the average of the distribution function
f(x,z;t) is nothing other than the density profile

n(x,t)=«f(x,z;0) N, - (86)

It will be shown below that, with the assumptions
(4)-(10), this quantity is independent of z. The distribu-
tion function is decomposed as

flx,z;t)=n(x,t)+8f(x,z;t) . (87)

The two terms on the right-hand side vary in time on
different scales, the density profile having a much slower
dependence. This function obeys the average Kkinetic
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equation
a,n(x,t)+%«v(t)b(z)8f(x,z;t))),,’b=0 . (88)

(It will be seen that, because of the spatial homogeneity in
z, the average in the second term is independent of z.)
This equation for the average density profile n(x,t) is
coupled to the fluctuating distribution §f(x,z;¢). The
aim of our treatment (as in any kinetic theory) will be to
eliminate the latter and to obtain a closed equation for
the average density profile. The fluctuating distribution
obeys the following equation, derived from (85):

3 3
8,57 +o()-Lor+u(n()Lss
= —o()b(2)2n(x,t) . (89)
dx

Anticipating a check a posteriori, we have eliminated
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from Eq. (89) all the terms that do not contribute to the
average in Eq. (88).

Equation (89) is a linear, first-order, inhomogeneous
partial differential equation for §f for any given realiza-
tion. It is, however, stochastically nonlinear. Its solution
or, equivalently, the propagator, is easily obtained by the
method of characteristics:

G(x,z,t|x",2',t')=8[x —F,(t,t)]8[z—F,(t,1')] ,  (90)
where
1y — 4
Fy(t,t)= [ dov(e)

1 91
Fy(t,0')= [ d0v(0)b[z—F,(1,0)] .

Following the classical procedure of Ref. [9], we obtain
the solution of Eq. (89) (neglecting the solution of the
homogeneous equation) and substitute it into Eq. (88):

3,n(x,0)= o [ ar(vb @bz —Fy e, 0l n(x—Fye,n)) . ©2)

v, b

This equation can be transformed by using the Fourier representation (6) and the explicit forms (91):

a,n(x,t)=(217)—2fo’drfdkldkz«b(k1 )b (kv (t)v(T)exp [-—i(kl +ky)z+ik, ['d6v(0) ]

XVin

x— [lagv(&)2m) ™" [drb(x)exp

This is the exact equation of evolution for the density
profile resulting from the hybrid kinetic equation (88).
As can be seen, this is a quite involved integro-differential
equation for the density profile; it is, however, a closed
equation. The main complication comes from the dis-
placement of the variable x by the quantity F,(z,7). The
latter depends on both stochastic functions v(¢) and b(z).
As a result, the density profile cannot be taken out of the
average on the right-hand side of Eq. (93). It is also clear
that, in spite of some similarities, Eq. (92) is not of the
form of an equation resulting from a SLT CTRW pro-
cess. Nevertheless, upon multiplication by x? and in-
tegration over X, this equation yields the correct running
diffusion coefficient (12), as can easily be checked. This
shows that the determination of the density profile is a
much more complex problem than the determination of
the MSD. Indeed, the MSD is but one among the infinite
number of moments necessary for the definition of the
profile.

We now introduce some simplifying approximations.
A very commonly used approximation in plasma tur-
bulence theory is the quasilinear approximation. It con-
sists of retaining on the right-hand side of Eq. (93) only
contributions of first order in the spectrum B(k) defined
in Eq. (7). It is easily seen that this approximation
amounts to neglecting altogether the displacement
F,(t,7) in x in Eq. (93), i.e., getting rid of the main

i [z [ /aro(n) | ]Tl»b . ©3)

difficulty. In the remaining expression, the average over
b factorizes out from the average over v. Using Eq. (7),
we introduce a factor 8(k;+k,), which allows the in-
tegration over k; to be done: this shows (as expected)
that the average in the equation is indeed independent of
z. The result of these operations is

a,n(x,t)=fo'dTH(T)v,in(x,z-T) ) (94)
with
H(n)=2m) "2 [ dk Bk)Z (k,7) . (95)

The function Z(k,7) is precisely the function defined in
Eq. (13). Equation (94) has exactly the same form as the
non-Markovian diffusion equation (45) resulting from a
SLT CTRW process.

Equation (94) is the main result of this work. The hy-
brid kinetic equation describing magnetic turbulence in
the quasilinear approximation is equivalent to a SLT
CTRW process. This result also shows indirectly that the
approximations used in the derivation of the Rax-White
result (82) are equivalent to the quasilinear approxima-
tion.

Equation (94) will be further discussed below.
Meanwhile, we introduce a further approximation, name-
ly, the Markovian approximation. As explained in Sec.
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VI, this amounts to replacing n(x,t —7) by n(x,t) in Eq
(94), which reduces to

9,n(x,t)=D(t)Vin(x,t) . (96)

This is an ordinary diffusion equation with a time-
dependent diffusion coefficient, of the same form as Eq.
(76), with the diffusion coefficient given by

D(1)=(2m? [ 'dr [ dk BU)Z(k, ) . 97

This is exactly the coefficient (12) and (19) obtained from
the V-Langevin equations and also from the Markovian-
ized SLT CTRW in Eq. (77). (Note that the factor V7 /2
in the latter equation has disappeared here because we
took the Markovian limit of the exact evolution equa-
tion.)

We now return to the non-Markovian diffusion equa-
tion (94). The memory kernel H(7) can be calculated
analytically by evaluating the integral over k: this was
done in Sec. II. The result is simply H(7)=€eF(v7),
where the function F(x) is defined in Eq. (15). A more
interesting form is obtained by using dimensionless vari-
ables, reduced with the SLT CTRW parameters defined
in Eq. (67):

e=%, =L —pusr . (98)
g TD

The non-Markovian diffusion equation (94) is then writ-
ten in the form

aen(g,e)=fo"dm(é;y)vgn(g,a—é), (99)
with
1 1
GGy )=—H~
Vo ay i+ yi6/7)]72
— X6/7)
X B/Y_L_Q_(__l_ . 100
¢ 2 1+y9(6/7) (100
This memory kernel possesses many interesting

features. First we note that G(6,v) is a regular function,
devoid of any singularities over the whole range
0=60< . For small values of 9, i.e., 0 <<y, the function
can be expanded and yields

1 g2
___2 0+ - - - 5

2V76(0,)=~— Lo+ | L
Y v 2y vy

<<y . (101)

This is in contrast to the kernel ¢(¢) appearing in the
SLT CTRW non-Markovian diffusion equation (45) and
(47), which becomes infinite as # —0. The reason is in the
fact that Eq. (99) originates from a semidynamical model,
which covers the evolution over the whole range of times.
On the contrary, Eq. (47) was derived as an asymptotic
approximation, valid only for times that are long com-
pared to the characteristic time 7 of the CTRW. More-
over, as the asymptotic decay is very slow (power law),
the equation will be accurate only for “very long” times.
We also consider the large-6 approximation:
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G(0,y)~— 6>y . (102)

1
W32’

The function G(, ) is shown in Fig. 2 for three different
values of the parameter y. (This function is actually the
same as the function F(x) [Eq. (15)], except that the scal-
ing of the variable 6 is different.) The asymptotic form
(102) is compared to the exact function in Fig. 3.

Another conspicuous feature of the memory kernel is
its dependence on y. Consider, indeed, the SLT non-
Markovian diffusion equation (70). If we introduce the
nondimensional variables 6=t /7, and £=x /o the equa-
tion reduces to

dgnsir(£,0)=1Vin(§,6)
1 —
e J! 807 Vingi1(6,0) . (103)

This equation contains no parameter at all. In octher
words, the SLT CTRW process depends only on two di-
mensional constants 7, and o, which are used to scale
the variables ¢ and x, respectively. In contrast, the solu-
tion of the HKE contains an additional parameter v,
which measures the collisionality. Thus this feature to-
gether, with the different shape of the memory function,
in particular the convergence at 6=0, shows that the
SLT CTRW model cannot be equivalent to the quasilin-
ear HKE for all times. However, it is clear that a com-
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FIG. 2. Memory function G=2V'7G(6,y) [Eq. (100)] for
¥=5,1,0.2. (The vertical scale is expanded for visibility.) -
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_FIG. 3. Large-0 approximation to the memory function
G(6,7y): Full line, exact, Eq. (100); dashed line Eq. (102).

parison of the two models over the whole range of times is
unfair: indeed, the SLT CTRW model is explicitly an
asymptotic approximation, valid for 6 >>1, and the com-
parison should only be made in this range. It appears
from Eq. (102) that for 6>>1, the memory function
G(6,y) becomes independent of ¥ and reduces to 8372,
i.e., it becomes identical (up to a numerical factor) to the
SLT CTRW memory function.

We now try to construct a convenient asymptotic ap-
proximation to Eq. (99). We pick a cutoff time 6,
whose value will be determined a posteriori and divide the
integration domain in Eq. (99) in two parts. Assuming
6>>0,..,, we may approximate n(£,0—0)—n(£,0) in the
integral taken from O to 6_;,. On the other hand, we as-
sume that in the integral from 6_;, to «, we may use
the asymptotic (y-independent) approximation G(8,y)
— —(4V'76>%)"1. Thus

emin — -
dgn(&,0)= [ ""dBG(B,7)Vin(£,6)

~av= [, 400 Vingo—8). (104
In the first term the integration involves only the memory
function. As the latter converges at 6=0, the integral is
merely a constant depending on the parameters ¥ and
Omin: it can be calculated analytically [9]. The result, in
reduced variables, is
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emin — —_
K(Gmm,y)zfo d8G(8,y)

1 ¢)(9mm/7)
- : 105
2V [1+7¢(9min/y)]1/2 ( )
Equation (104) is now written as
3 (£,0)=K (Opyin, 7 )VEn(£,6)
__1 e 553292 _a
o= Jo 4007/ Vin(£,6-0) . (106)

This equation is very similar to the SLT equation (103).
We must now determine the cutoff time 6_;,: the pro-
cedure is similar to the one used in Sec. V. We multiply
both sides of Eq. (106) by £2 and integrate over &

1 1

2 = . —_——
ag<§(9)> 2I<(8mm”y) ‘/ng/2+‘/77

min

6~12 . (107

The last term equals precisely the properly reduced
asymptotic value (22). We thus determine the cutoff time
by annulling the first two terms

2V K (0,0, 1) =05 . (108)

Substituting Eq. (105) into Eq. (108), squaring the latter,
and introducing the notation m =0, /y, we find the fol-
lowing equation for the determination of m:

d(m,y)=—(14+2m)e "+me ™+1—y '=0. (109)

This transcendental equation must be solved for m: this
has to be done numerically. We note first that

1
®(0,y)=——<0.
Y

On the other hand, the function tends asymptotically to-
wards

m — oo

. 1
lim ®(m,y)=1——.
4 Y

The numerical solution shows that, after a shallow
minimum, the function ®(m,y) increases monotonically
to its asymptotic value. Therefore, if ¥ > 1, the asymp-
tote is positive and the curve ®(m,y) crosses the m axis
in order to join the negative initial value to the positive
final value: there is a real root to the equation. If, howev-
er, ¥ <1, the curve remains below the m axis and there is
no root. For y =1, the curve is asymptotically tangent to
the m axis (see Fig. 4). The numerical solution of Eq.
(109) is plotted in Fig. 5. As expected, there is no solu-
tion for y <1, i.e., for highly collisional plasmas. The
solution is infinite for y=1. For y >2, the solution is
surprisingly close to linear. A very good fit is

0,,,=2.848+0.976y, ¥>2 . (110)

min
In conclusion, for weakly collisional plasmas y >1,
there exists a real cutoff 0, ;, and hence a finite value for
the number K(8,,;,,7). Equation (106), which has the
same form as the SLT CTRW equation (103) is thus vali-
dated as an asymptotic approximation.
We now note that for strongly collisional plasmas
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FIG. 4. Function ®(m,y) for three values of y.

vy <<1, a similar (though less precise) asymptotic approxi-
mation can be constructed. In this case, as can be seen
from Fig. 2, the memory function is very strongly
peaked at the origin. From Eq. (101) we find G(0,y)
=(2V'my)~!, which tends to infinity when y—0. We
may thus use a rough approximation of the “8 plus tail”
PP 60,11=L 801~ —_o-70(0-0,,)

VI= ) PV min’ »
where O(x) is the Heaviside step function. When this
form is substituted into Eq. (99), the result is exactly the
SLT CTRW equation (103). In conclusion, for both
weakly collisional and very strongly collisional plasmas,
the SLT CTRW model provides a very good asymptotic
representation of the exact quasilinear equation for the
density profile.

(111)

VIII. CONCLUSIONS

The CTRW concept appears as a quite useful tool for
the investigation of complex, in particular partially disor-
dered, systems. As such, it appears quite promising for
the modeling of transport in turbulent plasmas. The

Y

FIG. 5. Cutoff time O,,;, vs .

problem studied here is deliberately oversimplified, but
has the advantage of being exactly soluble. It therefore
yields the possibility of a direct comparison with the
CTRW model.

The latter model was further developed here for the
case of the SLT CTRW. The non-Markovian diffusion
equation (50) provides a very clear physical picture of the
evolution. A balance between the purely diffusive term
and the non-Markovian one limited by an inferior cutoff
time allowed us to construct a convergent equation that
yields correct values for all the moments and hence for
the complete density profile. As the memory function ex-
tends very far into the past (long tail), a Markovian ap-
proximation is very questionable.

As shown in Sec. VI, it is very easy to construct a SLT
CTRW model that yields the exact MSD for the magnet-
ic turbulence problem. It is much less trivial to evaluate
the validity of the model for the description of the com-
plete density profile. It was shown that the semiquantita-
tive argument of Rechester and Rosenbluth [5] yields
only the Markovianized limit of the equation of evolution
(76). The corresponding solution (78) has a Gaussian
shape that cannot be recovered as a limit of the exact
solution (68). On the other hand, the solution of the V-
Langevin equation in two dimensions, obtained by Rax
and White [7], has exactly the scaling predicted by the
SLT CTRW model. Their solution involves a number of
assumptions, whose meaning appears more clearly from
the results of Sec. VII.

It was shown there that the hybrid kinetic equation
(equivalent to the V-Langevin equations) can be solved
exactly in the present case. The exact density profile is
definitely not describable by a simple CTRW model be-
cause of its strong nonlinear dependence on the fluctua-
tion spectrum. The quasilinear approximation (widely
used for weak plasma turbulence) yields, however, a non-
Markovian diffusion equation (100), equivalent to a
CTRW. Its memory kernel is convergent over the whole
range of times and depends asymptotically on time as
t 372 like the SLT CTRW. It contains, however, an ad-
ditional dimensionless parameter y, describing the col-
lisionality of the plasma. It appears that an accurate
modelization by a specific SLT CTRW of the form of (50)
(in particular the determination of a cutoff) is only possi-
ble in a regime of weak collisionality (y >>1). A some-
what rougher approximation of the same type is, howev-
er, possible also in the domain of very strong collisionali-
ty.

In conclusion, our results show that the continuous
time random walk concept is a useful and interesting tool
in anomalous transport theory for turbulent plasmas. We
intend to apply it to the study of more realistic and more
complex problems.
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